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ABSTRACT 

Firms with different scope of technologies experience different firm growth. Understanding such 

heterogeneity requires knowing not only what drives technologies’ scope but also why these 

drivers remain different across firms. I propose inventor specialization as a driver of 

technologies’ scope: firms with more specialized inventors create narrower-scope technologies. I 

also propose that these narrower-scope technologies themselves in turn induce these firms’ 

inventors to remain more specialized. I empirically demonstrate this two-way interrelationship in 

the U.S. communication equipment industry using policy shocks as natural experiments and a 

new measure of scope. This interrelationship has important implications for why resources and 

organization appear isomorphic within a firm but heterogeneous across firms. 
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 A central theme in the Penrosian theory is that a firm’s growth is driven by its internal 

resources (Penrose, 1959; Helfat and Eisenhardt, 2004). Emerging from this theme is an insight 

that wider scope technological resources, that is, technologies with wider uses, are more effective 

in supporting a firm’s expansion, relative to technologies with specific applications 

(Montgomery and Wernerfelt, 1988; Silverman, 1999). For firms to act on this insight, however, 

an accompanying question, which has thus far received little attention in strategy research, needs 

to be addressed: what influences a firm to create wide or narrow scope technologies? 

 A natural response is to examine the firm’s inventors who create these technologies. How 

these inventors are organized must surely influence their technological outputs, as evidenced by 

the vast literature on research and development (R&D) organization (Damanpour, 1991; 

Cardinal, Turner, Fern, and Burton, 2011). Conceivably, a knowledge-based or search-based 

theory (Nickerson and Zenger, 2004; Ahuja and Katila, 2004; Leiponen and Helfat, 2010) could 

suggest that technological specialists, being constrained in breadth of knowledge, will invent 

technologies of specific uses, and vice versa. 

 However, theories of this nature suffer a shortcoming: they do not explain why the causal 

factor, in this case the firm’s extent of inventor specialization, is sustained. Many of these causal 

factors, such as whether the firm has technological specialists versus generalists, can presumably 

be adjusted by the firm. For a theory to propose that firms with less inventor specialization create 

wider scope technologies which facilitate their growth, it should ideally also explain why 

inventor specialization remains different across firms within an environment. Otherwise, a 

lingering puzzle remains as to why the other firms do not reduce their inventor specialization as 

well to facilitate growth, or why firms do not all converge in their extent of inventor 

specialization to conform to common external pressures (Lawrence and Lorsch, 1967). Hence, a 

more comprehensive question is: how does a firm’s inventor specialization influence its creation 

of wide or narrow scope technologies, and what sustains this extent of inventor specialization?  

 To address this question, I examine the interrelationship between a firm’s inventor 

specialization and the scope of its technologies. I propose that a firm with greater inventor 
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specialization creates more narrow scope technologies. Importantly, I also propose that these 

narrow scope technologies in turn exert pressure on the firm to increase its inventor 

specialization. A key theoretical novelty here is that it is the very output of inventor 

specialization itself (i.e. scope of technologies) that sustains the firm’s extent of inventor 

specialization. A firm having more technological specialists is induced to remain so because of 

the narrow scope technologies that these specialists create. These propositions simultaneously 

identify a causal factor for the firm’s scope of technologies and explain why such causal factor 

persists. The two-way causal nature of this interrelationship is not uncommon; indeed, it has 

similarities with interrelationships between other firm-level constructs that prior research has 

demonstrated, such as complementarities between firm’s scale and scope of product offerings 

(Basker, Klimek, and Van, forthcoming), or between product innovations and competencies 

(Danneels, 2002), or between project designs and performance outcomes (Cardinal et al., 2011).   

 I examine the propositions using longitudinal data on the U.S. communication equipment 

industry from 1985 to 2003. I use a new measure of technologies’ scope based on textual coding 

of the dependence-independence nature of patent claims. Empirically testing the interrelationship 

poses significant challenges of simultaneity and of unobserved heterogeneity. Both inventor 

specialization and scope of technologies are simultaneously determined by each other, and both 

are likely concurrently driven by unobserved factors such as a firm’s overall strategy. To 

overcome these challenges, I use two-stage estimations for each side of the causal effects. Each 

1
st
 stage estimation uses a policy shock to predict a change in a main variable (Berry and 

Waldfogel, 2001), with a difference-in-difference approach to fine-tune the shock (Card and 

Krueger, 1994). The corresponding 2
nd

 stage estimation then uses this predicted change from the 

1st stage to explain the resulting change in the other main variable. I use the Pennsylvania R&D 

state tax credit implementation in 1997 and the Telecommunications Act of 1996 as policy 

shocks for inventor specialization and scope of technologies respectively. This empirical design, 

while relatively unconventional in the strategy literature, is particularly useful in capturing 

interrelationships of this sort. I elaborate more on the details in the methods section. 
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 This paper potentially conveys new insights on firm heterogeneity and isomorphism. 

Scope of technologies and inventor specialization can be viewed as specific dimensions of a 

firm’s resource and organization respectively. While firms differ in their resources and 

organization of activities (Thompson, 1967; Henderson and Cockburn, 1994), within a firm, 

resource and organization often appear isomorphic, in that they seem to align with and support 

each other (Henderson and Clark, 1990; Baldwin and Clark, 2000). This prompts conjectures that 

one causes the other. For instance, firms organizing their search differently result in 

heterogeneous resources (Ahuja and Katila, 2004; Nickerson and Zenger, 2004). Conversely, 

resource heterogeneity causes firms’ organization to evolve differently (Nelson and Winter, 

1982; Birkinshaw, Nobel and Ridderstrale, 2002). However, when put together, these conjectures 

pose a fundamental puzzle, much like the classic ‘chicken or the egg’ dilemma: does the 

isomorphism arise from organization shaping resource, or from resource driving organization, or 

from both?  This study hints that both effects exist to reinforce the isomorphism within firm. In 

fact, they together sustain the heterogeneity of resource and organization across firms. 

THEORY AND HYPOTHESES 

Inventor specialization refers to the extent that the firm’s inventors are individually focused on 

particular technological areas. It affects how inventors search for new technologies and what 

type of knowledge they acquire (Eisenhardt and Tabrizi, 1995; Katila and Ahuja, 2002). The 

firm with a collection of technological specialists likely has greater knowledge depth, whereas 

the firm with technological generalists likely has greater knowledge breadth. 

Scope of technologies refers to how widely the individual technology can potentially be 

applied.
1
 It is an ex ante concept, as the firm often cannot perfectly predict the technology’s 

eventual uses. It is inextricably tied to the technology’s scope of novelty, as in, how widely such 

                                                           
1
 Scope reflects individual technologies’ potential use, and is different from the overall breadth of inventive 

activities. To illustrate scope: generic painkillers (e.g., Aspirin) have wider scope as they can be used for various 

types of pain. Specific painkillers (e.g., Celebrex which is meant for arthritis) have narrower scope as they are less 

appropriate for other types of pain. Scope is also different from search scope, which refers to the range of knowledge 

inputs generating the technology. To illustrate: the binary code is used widely in applications ranging from computer 

programming to various data transmissions, but was not invented based on a wide span of knowledge inputs. 
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novelty can be represented. When the technology’s novelty can be portrayed in various ways, the 

technology can likely be applied in various ways as well. This allows the firm to form an 

expectation of the eventual scope of use, based on the technology’s scope of novelty. 

 Inventor specialization reduces scope of technologies through two mechanisms. The first 

is problem identification (Cyert and March, 1963; Nickerson and Zenger, 2004). Specialized 

inventors have greater knowledge depth which helps them identify and evaluate domain-specific 

(narrow scope) problems and constraints (Hatfield et al., 1996; Jones, 2009). Technological 

generalists can better identify generic problems. By being repeatedly exposed to these problems 

across domains, they are more equipped to understand and formulate the problems (Dougherty 

1992), and also accurately assess the full value of finding solutions to these common problems. 

 The second mechanism is solution-identification. Specialized inventors have the requisite 

domain information (Hatfield et al., 1996) to recognize which solution to a nuanced problem is 

viable, and the skills at tweaking the solution to fit this nuanced problem. This comes from their 

search depth, reuse of knowledge, and familiarity of inherent concepts and scientific principles 

(Eisenhardt and Tabrizi, 1995; Katila and Ahuja, 2002), which is especially crucial in advanced 

domains (Jones, 2009). Consequently, they are better at generating narrow scope inventions. 

Generic problems are exposed to more settings where potential solutions may be found, and 

technological generalists familiar with multiple domains are more apt at identifying such 

solutions (Ahuja and Katila, 2004). Their exposures to diverse perspectives accords the creativity 

and skills needed to transfer solutions across domains (Allen et al., 1980; Dougherty, 1992; 

Leiponen and Helfat, 2010), and also the abilities to select appropriate settings for 

experimentation (Thomke, 1998). Thus, they are better at generating wide scope inventions. 

 The effect of inventor specialization can be more closely identified at the level of R&D 

location within a firm (Chacar and Lieberman, 2003; Gambardella and Giarratana, 2010). 

Knowledge sets are different across R&D locations (Howells, 1990; Kenney and Florida, 1994; 

Almeida and Kogut, 1999). Even when spillovers occur, they tend to be geographically confined 

(Shaver and Flyer, 2000; Carrincazeaux et al., 2001). Because inventors have access to different 
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knowledge depending on their R&D locations, the problems and solutions that they 

systematically identify are accordingly different. Thus, based on the two mechanisms explained 

above, I arrive at the first hypothesis. 

 

Hypothesis 1 (H1): In an R&D location of a firm, greater inventor specialization will 

subsequently narrow the scope of technologies. 

 Scope of the firm’s technologies in turn reduces inventor specialization. First, with 

changes in scope, inventor specialization evolves to maximize use of these technologies. To 

exploit the flexibility in wide scope technologies at a particular R&D location (Argyres and 

Silverman, 2004), the firm is induced to have more technological generalists at that location, as 

they are more able to recognize commonalities across domains. Likewise, given more narrow 

scope technologies, the firm tends to have more technological specialists who are skilled in 

foreseeing potential issues related to these technologies (Hatfield et al., 1996) and can determine 

how feasible it is to apply these technologies to specific problems (Jones, 2009). 

 Second, with changes in scope, inventor specialization evolves to optimize coordination 

in using these technologies. Applying wide scope technologies requires greater cross-domain 

coordination (Burns and Stalker, 1966; Chacar and Lieberman, 2001), which can be problematic 

when language, norms, and processes differ across domains (Becker and Murphy, 1992; 

Kretschmer and Puranam, 2008). The firm opts for more generalists who are cognizant of these 

differences and other diverging objectives or constraints across domains, and who are hence 

equipped to reduce frictions and coordinate such applications (Howells, 1989). Use of narrow 

scope technologies requires more within-domain coordination, crucial for dealing with errors 

during applications and making small tweaks on the ground (Kenney and Florida, 1994). The 

firm is induced to have more specialists with the domain expertise to manage such coordination. 

 Third, when scope reduces, the corresponding shift in knowledge pushes the firm toward 

greater inventor specialization, and vice versa. Knowledge accumulation is path-dependent 

(Nelson and Winter, 1982; Helfat, 1994); use of skills begets further similar skills. Applying 

wide scope technologies across domains induces inventors to learn about other domains and 
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become generalists. Using narrow scope technologies in particular domain encourages inventors 

to dwell deeper and specialize. The presence of other similar specialists further guides 

incremental building of expertise (Jones, 2009). Based on these arguments, I arrive at the second 

hypothesis. 

 

Hypothesis 2 (H2): In an R&D location of a firm, narrower scope of technologies will 

subsequently increase inventor specialization. 

METHOD 

I examine the hypotheses in the setting of U.S. communication equipment industry from 1985 to 

2003. Decisions on inventors and technologies are consequential here, as firms in this industry 

exhibit some of the highest R&D intensities across all industries,
2
 technological changes occur 

frequently, and substitution threats are high.
3
 This industry also uses wide varieties of related 

technologies, providing ample variance for scope and inventor specialization.
4
 

To form the sample, I match firms in the U.S. communication equipment industry (SIC 

codes 366 and 367) from the Compustat database to their assignee numbers by the U.S. Patent 

and Trademark Office (USPTO) with the matching file in the National Bureau of Economic 

Research (NBER) patent database. Next, I identify all patents assigned to these firms within the 

sample range (70,218 patents) from USPTO’s database. I then trace all inventors and their 

geographical locations listed in the patents, using their first-name initials and last names (43,545 

inventors). This trace of inventors is done for each firm-year, which prevents errors of inventors 

across different firms having same first-name initials and last names, or from inventor mobility.
5
 

                                                           
2
 Firms’ R&D intensities in this industry are comparable to those of pharmaceutical firms (Fransman 2002). In 1999, 

R&D expenses for Cisco, Ericsson, and Nortel were 18.7, 14.5, and 13.9 percent of sales respectively. Equivalent 

figures for Roche, Glaxo Smithkline, and Smithcline Beecham were 15.5, 14.4, and 10.8 percent respectively. 
3
 E.g., for data transmission, there are multiple competing transmission media, such as light wave, wireless radio 

wave, power lines, and satellite. Within each medium, there often exist multiple competing technologies as well. 
4
 For telecommunication applications alone, related technologies include circuit switch and signaling systems, data-

transmission, customer-premise equipment like servers and routers, communications protocol connecting networks, 

network technologies like Ethernet and voice-data convergence technologies. 
5
 To check that this procedure is not corrupted by a firm’s location having multiple inventors with same first-name 

initials and last name in a year, I randomly select 50 patents that each has other patents with (matched) inventors of 

the same first-name initials and last name within the firm, location, and year. I then manually check these 50 sets of 

patents and find no instance where matched inventors have different first names or middle names. Alternatively, I 

re-construct the entire sample based on inventors’ full first names and last names. All findings remain robust. 
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The unit of analysis is a firm’s R&D location in a year. I use the cities in which inventors 

reside as proxies for the firm’s R&D locations (Gambardella and Giarratana, 2010).
6
 To ensure 

that no spurious locations are created because of spelling errors or differences in how a city is 

named across observations, I manually check the city names within each state in all 10,005 

observations against a reference list – www.city-data.com.
7
 I further drop all cities corresponding 

to only one patent, to remove spurious locations due to spelling error in the name. The remaining 

sample contains 3,449 R&D locations and 10,863 observations.
8
 

Variables 

To measure scope of technologies, prior research has used counts of technology classes a patent 

is assigned to or the claims in a patent (Lerner, 1994; Lanjouw and Schankerman, 2004). I 

conducted informal conversations with patents lawyers and corporate licensing experts who 

expressed that these measures, while they have merits, may not adequately capture scope.
9
 The 

practitioners suggested that scope is more closely reflected in the text used to describe the 

technologies, particularly in the patent claims. While claims, reflecting scope of novelty, do not 

perfectly capture the ex post scope of applications, they nonetheless offer a closer prediction. 

                                                           
6
 Manual tracing of firms’ historical R&D locations is likely impractical and inaccurate given the large-sample panel 

and that the information is not available in public documents such as 10K statements or annual reports. 
7
 I treat city names within a state that are based on the same root words, and that do not show up as separate cities in 

the reference list, as the same city (e.g. ‘Anaheim Hills’ and ‘Anaheim’ in California). I also match city names with 

differences in spacing between words (e.g. ‘Sugar Hill’ and ‘Sugarhill’). I then check for inconsistent acronyms 

across city names (e.g. ‘Fort Lauderdale’ and ‘Ft. Lauderdale’). Finally, I match city names within state with small 

differences in spellings (e.g. ‘Rancho Palos Verdes’ and ‘Racho Palos Verde’). 
8
 This procedure does not capture instances where a firm’s inventors from the same location commute from different 

cities. Using larger geographic areas, such as Metropolitan Statistical Areas (MSA) or states, mitigates this problem 

but suffers from over-aggregation, i.e. the firm’s R&D activities may be conducted in multiple locations within an 

MSA or state. For robustness, I match cities to MSAs using the scheme in Thompson (2006) and reconstruct the 

sample with MSA as proxy. Findings remain largely robust. Even with city as proxy, over-aggregation may still 

occur. A corporate headquarter with an attached R&D lab may have other labs in other functional units within the 

same city. Inventor specialization constructed at the city level may not be indicative of the actual inventor 

specialization for the R&D lab that created technologies with a particular scope. However, this problem is likely to 

work against finding results supporting the propositions. 
9
 For instance, a patent assigned to one technology class, with broad applications within the class, may not be 

narrower in scope than another patent assigned to multiple classes covering only narrow applications in each class. 

Similarly, a patent with one generic claim constituting a vital component in numerous subsequent uses may not have 

narrower scope than another patent with multiple incremental claims of small and insignificant improvements. 

http://www.city-data.com/
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In response, I create a new measure of scope using textual coding of patent claims. There 

are two types of claims: independent and dependent (Radack, 1995). An independent claim states 

an unprecedented element of novelty that is not partially described elsewhere in the patent, 

whereas a dependent claim represents an extension or elaboration over a previously-described 

claim in the patent.
10

 I create a Java-based language-parser program to access patent texts on the 

USPTO website and code the dependence-independence nature of all individual claims with the 

following heuristics. A dependent claim always contains a reference to an earlier claim number 

within the same patent. References always include the word structure ‘claim #’ (where # is a 

number). The program identifies a dependent claim as one that incorporates this word structure. 

It captures all references in the form of ‘as defined in claim #’, or ‘according to claim #’, or ‘as 

claimed in claim #’, or ‘as set forth in claim #’, or ‘the method of claim #’, etc. All other claims 

are coded as independent. Table 1 shows some examples of claims coding. These heuristics are 

formulated via extensive readings of actual claim texts and legal literature, and verified with 

practitioners who are patent lawyers and corporate licensing experts. Prior to coding, I iteratively 

pre-test the program on 100 random patents, to manually check for programming errors and 

robustness to various structures of claim texts. I then use the program to code the claim of all 

70,218 patents in the sample. Next, I aggregate this coding at the patent level, and map patents to 

R&D locations based on inventors listed in the patents. Note that one patent is assigned to more 

than one R&D location when it involves inventors residing in multiple locations. This is 

appropriate as my objective is not to count patents, but rather to trace scope and inventor 

specialization within each location. Finally, I construct the measure Scopeijt as the average 

number of independent claims per patent that firm i in R&D location j applies for in year t.
11

 

*** Insert Table 1 here *** 

                                                           
10

 To illustrate with hypothetical examples: an independent claim may be ‘a table comprising of three legs’, whereas 

a corresponding dependent claim would be ‘a table, as described in claim # (where # refers to a number), wherein 

one of the legs has a wheel attachment’. Accordingly, an independent claim typically contains greater novelty than a 

dependent claim, and the potential scope of application covered by the independent claim is usually larger. 
11

 Note that this measure, strictly speaking, captures technologies’ scope of novelty and relies on the notion that such 

scope corresponds to the technologies’ potential scope of use, as explained in an earlier part of the manuscript. 
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To measure inventor specialization, I compile inventors at each R&D location j in a given 

year t. For each inventor k, I trace the patent applications the inventor is involved in for year t 

and their assigned main technology classes. I then calculate a concentration ratio of technology 

classes for all patents involving inventor k in year t, reflecting how focused this inventor is on 

particular technological areas. Finally, I take the average of this concentration ratio across all 

inventors in firm i at R&D location j in year t to create the variable Inventor Specializationijt.
12

 

 These measures may not have incorporated all relevant inventions, since not all 

inventions are patented (Cohen, Nelson and Walsh, 2000). But this is likely not problematic in 

this single-industry study, since patenting propensities are stable within an industry (Griliches, 

1990). A prior, it is also not apparent why unpatented inventions would systematically differ 

from patented ones in scope or inventor specialization, and unlikely that motivation for non-

patenting will systematically bias or spuriously create the proposed negative interrelationship. 

The empirical design further mitigates potential omission bias, as I explain later.
13

 

I control for Total Patentsijt for firm i at location j in year t to account for inventive 

activities inducing inventors to both operate in many technological areas and create wide scope 

technologies. A location covering more technological areas may use wider scope technologies 

and require inventors to be individually less specialized. I control for such Technological 

Breadthijt measuring the number of patents’ assigned technological subcategories, based on 

NBER’s classification, associated with the location. This variable is different from Inventor 

Specializationijt as it measures overall breadth for the location rather than average inventor 

                                                           
12

 E.g. firm i at location j has two inventors, Brian and Stewie, and two patents in year t assigned to different classes. 

Brian is involved with one patent while Stewie is involved with both. Concentration ratios of technology classes, i.e. 

sum of squares of ratios, for Brian and Stewie are 1 and 0.25+0.25=0.5 respectively, and Inventor Specializationijt is 

(1+0.5)/2 = 0.75. If Brian and Stewie are involved with one patent each, then greater inventor specialization would 

have occurred. Inventor Specializationijt would reflect this by taking on a greater value of (1+1)/2 = 1. 
13

 Alternatively, Inventor Specializationijt could be the average technological breadth across inventors instead of a 

concentration ratio, i.e., it need not be weighted by the inventors’ actual use of knowledge across technological 

classes. I create a variable, domainijt, by calculating the average count of technological classes that inventors are 

involved with, and then taking the inverse, such that the higher the value, the more focused inventors are on 

particular technology. The correlation between domainijt and Inventor Specializationijt is high at 0.90. I repeat all 

analyses with domainijt instead. The difference-in-difference estimator Tax_Pennsylvaniaijt in model 2 of Table 3 

loses its significance though still has the right sign. All other findings remain robust. 
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specialization. Inventors drawing more on science may create wider scope technologies and 

concurrently are less constrained to particular technological area. I add Scienceijt to capture the 

science-based prior art used to generate the technologies, measured as the average proportion of 

non-patent-based citations made in patents. I also add Knowledge Inputsijt which counts citations 

in patents, to control for span of knowledge inputs which may both widen scope and induce 

inventors to be less specialized. Additionally, I control for the firm’s number of employees 

(Firm Sizeit), cash and short-term assets (Cashit), and Profitsit. I add year dummies to capture 

inter-temporal heterogeneities. 

Econometrics issues and policy shocks 

Tests of the propositions are vulnerable to the simultaneity problem.
14

 Also, unobserved 

heterogeneity, e.g., the firm’s strategy to be a specialist, may both discourage wide scope 

technologies and encourage inventors to individually specialize. These issues cause non-random 

assignments of observations to different levels of the two main variables, resulting in biased 

coefficient estimates (Holland, 1986).
15

 To address these issues, I use two-stage least square 

(2SLS) estimation to test each proposition, with a policy shock in the 1
st
 stage to predict an 

exogenous change in a main variable (Berry and Waldfogel, 2001) and difference-in-difference 

estimators (Card and Krueger, 1994) to identify how this change on a treatment group (locations 

that experienced the shock) is different from any concurrent changes on a control group 

                                                           
14

 Consider the following interrelationship: (1) Scopeijt = β0 + β1Specializationijt + μijt. (2) Specializationijt = γ0 + 

γ1Scopeijt + εijt. Where E(μijt) = 0, E(μijt
2
) = σ

2
, E(εijt) = 0, and both β1 and γ1 are non-zero. Substituting equation (1) 

into (2), we arrive at: Specializationijt = (1- β1γ1)
-1

[γ0 + γ 1β 0 + γ1μijt + εijt]. Hence, E(Specializationijt) = (1- β1γ1)
-1

(γ0 

+ γ1β0), and Specializationijt - E(Specializationijt) = (1- β1γ1)
-1

[γ1μijt + εijt]. Thus, Cov(Specializationijt, μijt) = E{ 

[Specializationijt - E(Specializationijt)][μijt – E(μijt)] } = E{ [(1- β1γ1)
-1

(γ1μijt + εijt)][ μijt] } = (1- β1γ1)
-1

[ γ1σ
2
 + E(μijtεijt) 

] ≠ 0 since σ
2
 > 0. This non-zero covariance between specialization and the error term in the estimation violates the 

assumption of OLS and leads to biased estimates of coefficients in equations (1), and similarly for equation (2). 
15

 Consider the effect of Specializationijt on Scopeijt. Suppose Specializationijt takes two levels: high and low. 

Conceptually, the effect of Specializationijt refers to the average difference between Scopeijt under high (Yh) and low 

(Yl) Specializationijt, across all locations. Yet, empirically, each location has only one level of Specializationijt at any 

point in time, and the researcher cannot observe what its Scopeijt would have been had it adopted a different level of 

Specializationijt at that point. In an estimation equation, the coefficient of Specializationijt captures (Yh|i=h) – 

(Yl|i=l), where (Yh|i=h) and (Yl|i=l) refer to the average Scopeijt among locations with high and low levels of 

Specializationijt respectively. A problem arises when (Yh) ≠ (Yh|i=h), and (Yl) ≠ (Yl|i=l), because some unobserved 

factors are selecting the locations into their respective groups (i=h or i=l). This non-random assignment of locations 

to either levels of Specializationijt constitutes the source of biases arising from unobserved heterogeneity. 
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(locations that did not experience the shock). In the 2
nd

 stage, I trace how this change in one main 

variable results in a change in the other main variable. 

For Inventor Specializationijt, I use the Pennsylvania R&D state tax credit enactment in 

1997 as a policy shock. Following a federal R&D tax credit in the U.S. Economic Recovery Tax 

Act of 1981, Pennsylvania, along with various states, introduced a similar state tax credit for 

within-state firms in addition to the federal tax credit, so as to attract firms’ R&D activities into 

the state.
16

 This mainly induced firms to relocate projects that would otherwise have been 

allocated to other states, to Pennsylvania, so as to reduce R&D costs, without inducing firms to 

change either their overall investment levels or project type (Wilson, 2006).
17

 With these project 

relocations, locations in Pennsylvania were effectively assigned more projects with different 

technological nature than before; and inventors on average have to operate in more technological 

areas than they would otherwise have, resulting in a decrease in Inventor Specializationijt. 

StateTaxijt captures observations up to five years after the enactment, i.e. it is 1 between 1998 

and 2002 inclusive, and 0 otherwise. Redefining StateTaxijt as one, two, three or four years post 

enactment yields robust findings. Pennsylvaniaijt, equals 1 (treatment) for locations in 

Pennsylvania and hence experienced the state tax credit, and 0 otherwise (control). The 

difference-in-difference estimator Tax_Pennsylvaniaijt combines the two dummy variables and 

captures observations in Pennsylvania occurring up to five years after enactment. 

For Scopeijt, I use the Telecommunications Act of 1996 as a policy shock. This act was 

meant to increase competition in the local telephony markets previously monopolized by the 

incumbent local exchange carriers (ILECs), while allowing the ILECs to enter long distance 

                                                           
16

 The federal tax credit was 25 percent of qualified R&D expenses over a base level of a firm’s average R&D in the 

past three years. Qualified expenses include wages, intermediate or materials expenses, and rental costs of property 

and equipment incurred in performing research ‘undertaken to discover information’ that is ‘technological in nature’ 

for a new or improved business purpose. Structure of the state tax credits largely resembles that of the federal tax 

credit. 
17

 Through interviews with officers at R&D-performing firms, OTA (1995) concludes that while tax and financial 

directors were aware of the R&D tax credits and their relevance to firm value, the tax credits have little influence on 

the nature of R&D activities for the overall firm. Likewise, other studies show that supply of scientist is inelastic, 

and R&D subsidies tend to go to scientists’ wages without accordingly increasing R&D expenses (Goolsbee, 1998). 
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service markets.
18

 While many questioned its effectiveness (Fransman, 2002), it nonetheless 

resulted in firms being involved in more markets, even if not in the envisioned manner.
19

 These 

market entries and new applications by downstream network firms such as AT&T and ILECs 

created demand of wide scope technologies for upstream R&D firms, as technologies now can 

and need to be applied across different settings. Also, the Act fostered an emphasis on 

interconnectedness between technologies, evident from the numerous standards bodies set up 

subsequently (e.g. IEEE, EIA, ITU, etc.). When firms entered new markets, they created massive 

requirements for interoperability of different networks, and also standardization of 

communication protocols between networks (Economides, 2004),
20

 resulting in lower 

technological obstacles for wide scope technologies to span various networks and applications. 

Actijt, captures observations occurring after the act’s enactment year, i.e. it takes the value of 1 

for observations occurring after 1996, and 0 otherwise.
21

 The act likely affects firms’ R&D 

locations that are more focused on technologies related to communication equipment (treatment) 

than those less so (control). I group patents’ technology classes into 36 technology subcategories, 

based on NBER’s categorization. Of these subcategories, I identify 10 as being less related to 

communication equipment.
22

 Telecommunicationsijt is 0 for locations involved in these 10 

subcategories (control group), and 1 otherwise (treatment group). Act_Telecommunicationsijt, 
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 To facilitate entry in local exchange markets, the Act mandated ILECs’ leasing of unbundled network elements to 

new entrants ‘at cost’, and also their sale of services to competitors at ‘wholesale prices’. 
19

 By 2003, ILECs successfully entered the long distance service market in all states (Economides 2004). Long 

distance service providers initially tried to enter the local exchange markets by leasing the ILEC’s existing network. 

However, when leasing procedures were substantially delayed by lack of agreement on terms and long-drawn law 

suits, they reacted by acquiring the ILECs for rapid entries (Fransman, 2002). Also, the Act corresponded with a 

time of rapid development in internet telephony, and cable companies actively entered the local exchange markets 

with internet telephony as a substitute for the traditional copper wire local loops. In response to these threats, the 

ILECs themselves started offering long distance internet telephony services as well (e.g. AT&T in 1998). 
20

 Section 251(c)(2) of the Act mandates interconnection between local and long distance networks, to facilitate 

entry in local exchange markets. Also, the Act, by promoting integration of markets, spurred a near-euphoric 

optimism within the financial markets in the stock valuations of telecommunication firms (Fransman, 2002). Share 

prices rose steadily for four years following the Act, and the financial markets were ready to reward firms that were 

able to progress on this trend of interconnectedness and integration of different networks and technologies. 
21

 Restricting Actijt to 1997—2000 to account for the stock market decline thereafter, does not change findings. 
22

(i) agricultural, food, textile, (ii) organic compounds, (iii) surgery and medical Instruments, (iv) biotechnology 

drugs and med, (v) motors and engines + parts, (vi) transportation mechanicals, (vii) amusement devices, (viii) 

apparel and textile, (ix) furniture, house fixtures, and (x) receptacles (not otherwise classified under 

Communications). 
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combines the two dummy variables to capture observations occurring after the enactment for 

locations working on technologies related to communication equipment. 

Model specifications 

To test H1 using 2SLS estimations, I first estimate the effect of the Pennsylvania R&D state tax 

credit on Inventor Specializationijt in the 1
st
 stage. 

Inventor Specializationijt = β0 +β1StateTaxijt +β2Tax_Pennsylvaniaijt +β3Pennsylvaniaijt 

+βhControls +εijt   

β2Tax_Pennsylvaniaijt, narrows the change in Inventor Specializationijt to the portion arising 

from the policy enactment and not from other events occurring concurrently. I then predict 

Inventor Specializationijt, lag it by one year, and estimate its effect on Scopeijt in the 2
nd

 stage.
 23

 

Scopeijt = δ0 + δ1Predicted Inventor Specializationijt-1 + δhControls + ξijt 

Test of H2 follows a similar set-up. 

Scopeijt = β0 +β1Actijt +β2Act_TeleCommunicationsijt +β3TeleCommunicationsijt + βhControls +εijt 

Inventor Specializationijt = γ0 + γ1Predicted Scopeijt-1 + γhControls + μijt 

FINDINGS 

Table 2 contains descriptive statistics of variables.
24

 To check if the Pennsylvania R&D tax 

credit is a viable shock for Inventor Specializationijt, I plot in Figure 1 the average Inventor 

Specializationijt separately for before and after shock (1997), and also for treatment and control 

group. This figure shows that Inventor Specializationijt reduces on average after the shock for the 

treatment group (locations in Pennsylvania) as expected, and this reduction appears larger than 

that for the control group (locations not in Pennsylvnia). I similarly check the effectiveness of the 

Telecommunications Act in Figure 2. After the shock in 1996, the average Scopeijt increases as 

                                                           
23

 The model calculates Specializationijt on a yearly basis but does not assume that it changes from year to year. The 

model allows five years for Specializationijt to react to the shock and captures its average difference between the 

shock period versus the non-shock period for the treatment group, relative to the control group. 
24

 The variables Total Patent Applicationsijt, Technological Breadthijt, Knowledge Inputsijt and Profitsit exhibit high 

pair-wise correlations with other variables. To ensure that findings are not affected by multicollinearity, I drop each 

variable individually, as well as all four variables together, from the main analyses in Table 3 in separate robustness 

tests. All results remain robust. 
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expected; and such increase appears larger for the treatment group than for the control group. 

These figures provide some assurance that the respective shocks are effective instruments. 

*** Insert Table 2 and Figures 1 and 2 here *** 

The left panel of Table 3 holds results for H1. Models 1—2 predict Inventor 

Specializationijt in the 1
st
 stage. StateTaxijt is significantly negative in Models 1–2, suggesting 

that Inventor Specializationijt is lower on average for all locations in the five years post tax credit 

enactment. Consistent with Figure 1, Tax_Pennsylvaniaijt is significantly negative in Model 2 (t-

statistics -2.09), indicating that the tax credit induces a sharper decline in Inventor 

Specializationijt for locations in Pennsylvania than elsewhere over the same time period. This 

adds confidence in the policy shock as an effective instrument. I predict Inventor Specializationijt 

with model 2, and use the one-year lagged prediction to estimate Scopeijt in the 2
nd

 stage in 

Model 3. Predicted Inventor Specializationijt-1 is significantly negative (t-statistic -4.92), 

suggesting that a lowering of Inventor Specializationijt induces the particular R&D location of 

the firm to subsequently generate technologies with wider scope. This supports H1. 

*** Insert Table 3 here *** 

The right panel of Table 3 contains results for H2. In the 1
st
 stage estimations (Models 4-

5), Actijt is in generally positive, suggesting that scope may be wider across all locations after 

1996. Importantly, as in Figure 2, the significantly positive Act_TeleCommunicationsijt (t-

statistics 3.22) suggests that the Act increases Scopeijt more so for R&D locations focused on 

communication equipment technologies than elsewhere. This further assures that the policy 

shock is appropriate. I predict Scopeijt with model 5 and use the one-year lagged prediction to 

estimate Inventor Specializationijt in the 2
nd

 stage in Model 6. Predicted Scopeijt-1 is significantly 

negative (t-statistic -4.41), suggesting that a widening of Scopeijt causes the R&D location of the 

firm to subsequently reduce its Inventor Specializationijt. This supports H2.
25

 

                                                           
25

 Scopeijt may take more than a year to react to changes in inventor Specializationijt (H1), or vice versa (H2).  I vary 

lags in the 2
nd

 stage estimations to two, three, and four years separately for all analyses. Findings remain fully 

robust. I also repeat all analyses allowing for robust errors. In Model 2, Tax_Pennsylvaniaijt becomes only 

significant at 10 percent (t-statistics -1.76), which is arguably still meaningful given the test’s one-tail nature. All 

other findings remain robust. 
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Analysis of scope measure 

To examine the distributional properties of Scopeijt, I re-construct the dataset at the patent level. 

The average scope, i.e. number of independent claims in a patent, is 3.24 (26% of all claims), 

with a standard deviation of 2.27 and range of 1 to 50 per patent. I then compare it with other 

alternative scope measures: the patent’s number of technology classes, number of citations made, 

number of citations received, and generality of patents (Lerner, 1994; Lanjouw and Shankerman, 

2004). The pair-wise correlations between these measures, as reported in Table 4, are low even 

among the alternative measures, suggesting that each measure contains substantively different 

information about the patented technology. Next, I regress my scope measure on the alternative 

measures separately, controlling for the total number of claims and year dummies (Table 4). 

Each alternative measure is significantly and positively related to my scope measure across 

models, suggesting that while these measures may contain different information, the scope 

component is common and present across all measures.
26

 

*** Insert Table 4 here *** 

CONCLUSIONS 

The core proposition in this paper is that a firm with more specialized inventors creates more 

narrow scope technologies, and importantly, these narrow scope technologies in turn induces the 

firm to increase its inventor specialization. This not only explains why firms differ in their 

technologies’ scope, which is by itself an important inquiry given its role in heterogeneous firm 

growth, but also explains how this difference across firms is sustained. I find empirical support 

for this proposition in the U.S. communication equipment industry from 1985 to 2003. 

 Viewing technologies’ scope as a resource attribute and inventor specialization as a form 

of R&D organization, this paper aims to shed light on the commonly observed isomorphism 

                                                           
26

 Scopeijt depends on both the technology’s nature and the intellectual property (IP) component, i.e., how claims are 

drafted. A concern could be that such IP component may confound findings. However, the empirical design 

mitigates this concern: it is unlikely that the Telecommunications Act changes the way lawyers draft claims. Thus, 

variations in Scopeijt predicted by the Act likely reflect changes in underlying technologies as intended. Likewise, it 

is unlikely that changes in Inventor Specializationijt arising from the tax credit will alter lawyers’ drafting technique. 

Hence, Inventor Specializationijt likely affects the subsequent technologies’ nature and not the IP component. 
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between a firm’s resource and organization. A potential explanation of this isomorphism, 

informed by prior research, is that how a firm organizes its search activities determines the types 

of resources it creates and enforces the isomorphism. Yet, without recognizing that such 

organization is itself shaped by the firm’s resources, this simplistic attribution falls short of 

comprehensively explaining why a firm’s resource and organization appears isomorphic, and 

misses the inherent ‘chicken or the egg’ dilemma in this inquiry. The same theoretical shortfall 

exists in research explaining how a firm’s resources shape its organization of activities. 

Conceptually, this paper suggests a different approach to examine firm heterogeneity. 

Past research typically attribute firms’ different performances to resource heterogeneity 

(Henderson and Cockburn, 1994), and then further attribute such heterogeneity to other forms of 

firm heterogeneity, spurring a perpetual inquiry for antecedents in the upstream. For instance, 

resource heterogeneities is caused by variations in search, which results from different R&D 

organization, which is in turn a consequence of distinct strategies, and so on. This paper instead 

breaks away from such perpetual inquiry and suggests that two forms of firm heterogeneities, in 

scope of resource and organization of inventors, can both be antecedents of each other. The two 

forms of firm heterogeneities, once in place, may be mutually reinforcing and difficult to change. 

 Such two-way interrelationships are by no means uncommon. For instance, a firm’s 

resources driving strategy selection are in turn shaped by the firm’s strategy; a firm’s reputation 

facilitating alliance formation is itself enhanced by the firm’s alliances; firm-specific capabilities 

expanding a firm’s boundaries will themselves grow with increasing internalization. This paper 

serves as a call to examine these other interrelationships in strategy research, and offers an 

empirical tool for such examination. Fundamentally, at the heart of the propositions lies a more 

generic interrelationship between how one organizes activities and what skills one possesses, and 

this interrelationship could well extend beyond the realm of firm decisions. Future research has 

more opportunities to reveal the process of how such interrelationship unfolds over time, such 

that specialization begets further specialization while a generalized entity strives for greater 

generalization. Further, intriguing questions remain as to how initial differences across firms 
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arise before interrelationships of this sort kick in to sustain such differences. Hence, while this 

paper lay but modest claims, the potential future discoveries it aspires to catalyze are plentiful. 
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Patent 

number

Title Claim Claim text Coding

6603206 High bandwidth, low 

power, single stage 

cascode 

transimpedance 

amplifier for short 

haul optical links 

1 An amplifier comprising: an input port; an output port; a ground to provide a ground voltage; a power rail 

to provide a power voltage; a bias circuit to provide a bias voltage between the ground voltage and the 

power voltage; a common-gate transistor comprising a gate biased by the bias circuit, a source 

connected to the input port; and a drain connected to the output port; and a pMOSFET and a nMOSFET 

to provide bias current to the common-gate transistor, the pMOSFET comprising a gate connected to 

the ground, and a drain; and the nMOSFET comprising a gate connected to the power rail, and a drain.

Independent

2 The amplifier as set forth in claim 1 , wherein: the common-gate transistor is a pMOSFET with its 

source connected to the drain of the pMOSFET, and its drain connected to the drain of the nMOSFET

Dependent

6613660 Metallization process 

sequence for a barrier 

metal layer

1 An in situ method of forming a barrier metal layer above a surface of a substrate including a layer of 

dielectric material, the method comprising: cleaning the surface of the substrate; depositing, in a 

plasma ambient, the barrier metal layer on the surface of the substrate; and controlling the 

temperature of the surface below a predefined critical temperature so as to inhibit void generation 

underneath the barrier metal layer.

Independent

2 The method of claim 1 , wherein controlling the temperature of said surface includes cooling the 

surface prior to depositing the barrier metal layer.

Dependent

4 The method of claim 2 , wherein cooling the surface includes allowing the substrate to dissipate heat 

by at least one of thermal conduction, radiation and convection for a predefined time period.

Dependent

15 An in situ method of forming a barrier metal layer above a surface of a substrate, the method 

comprising: cleaning the surface of said substrate; depositing, in a plasma ambient, a barrier metal 

layer on the surface of the substrate; and performing at least one sequence interrupt, each of which 

defines a time period of reduced deposition activity on the surface of the substrate, said at least one 

sequence interrupt inhibiting the formation of voids in the barrier metal layer.

Independent

16 The method of claim 15 , wherein cleaning the surface of said substrate comprises pre-degassing the 

surface of said substrate.

Dependent

6611477 Built-in self test using 

pulse generators

6 A method of measuring a first signal-propagation time required for a rising edge of a signal to traverse 

a test circuit from a data input node of the test circuit to a data output node of the test circuit, the method 

comprising: a. providing sequential, alternating falling and rising signal transitions on the test-circuit 

data input node, thereby producing a corresponding series of alternating falling and rising signal 

transitions on the test-circuit data output node; and b. for each one of a plurality of the rising signal 

transitions that occur on the test-circuit data output node over a selected time period: i. instigating a 

subsequent one of the rising signal transitions on the test-circuit data input node in response to the 

one rising signal transition; and ii. instigating a subsequent falling signal transition on the test-circuit 

data input node in response to the one rising signal transition on the test-circuit data output node.

Independent

7 The method of claim 6 , further comprising developing a clock transition for each one of the plurality of 

the rising signal transitions that occur on the test-circuit data output node over the selected time period, 

thereby creating a clock signal having a clock period proportional to the first signal propagation time.

Dependent

 
Table 1: Examples of patent claims coding 

 

Obs Mean Std. Dev. i ii iii iv viii viii viii viii ix

i Scope ijt 11310 3.39 1.63 1.00

ii Inventor specializationijt 11310 0.80 0.21 -0.06 1.00

iii Total patent applications ijt
a

11310 0.10 0.33 0.03 -0.01 1.00

iv Technological breadthijt 11310 2.79 2.56 0.00 -0.03 0.66 1.00

viii Science ijt 11310 0.11 0.13 0.13 -0.03 0.04 0.05 1.00

viii Knowledge inputs ijt
b

11310 0.12 0.57 0.06 -0.02 0.92 0.49 0.04 1.00

viii Firm size it
b

10863 0.05 0.05 0.00 0.03 0.03 0.13 -0.05 -0.01 1.00

viii Cashit
c

10942 0.00 0.00 0.10 -0.02 0.04 0.10 0.01 0.03 0.33 1.00

ix Profits it
c

10942 0.00 0.00 0.08 -0.05 0.04 0.09 0.01 0.02 0.25 0.73 1.00

a, b, c: variables scaled in (a) hundreds, (b) thousands (c) millions respectively  
Table 2: Descriptive statistics 
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Second stage

(1) (2) (3) (4) (5) (6)

Dependent variable Dependent variable

Inventor 

specialization

Statetax ijt -0.0533 *** -0.0513 *** Actijt 0.678 *** 0.220

(-3.11)  (-2.98)  (5.19)  (1.14)

Pennsylvania ijt 0.0209 0.0326 ** Telecommunicationsijt 0.0349 -0.175 *

(1.49)  (2.16)  (0.46)  (-1.75)

Tax_Pennsylvania ijt -0.0848 ** Act_telecommunicationsijt 0.466 ***

(-2.09)  (3.22)

Predicted inventor 

specializationijt-1 -4.396  *** Predicted scope ijt-1 -0.0436 ***

(-4.92)   (-4.41)  

Total patentsijt 0.148 *** 0.148  *** -0.47    *** Total patentsijt -0.914  *** -0.926 *** 0.0727 ***

(7.11)  (7.11)  (-2.78)   (-5.95)   (-6.03) (3.51)   

Technological 

breadthijt -0.0077 *** -0.00777 *** -0.0218 ** Technological breadthijt -0.000342 0.000596 -0.00596 ***

(-6.61)  (-6.63)   (-2.19)   (-0.039)  (0.067) (-5.17)   

Science ijt -0.0317 ** -0.0312 ** 1.27    *** Science ijt 1.478   *** 1.479 *** -0.0289 

(-2.00)  (-1.96)   (9.03)   (12.6)     (12.6)   (-1.50)   

Knowledge inputsijt -0.0667 *** -0.0667 *** 0.401   *** Knowledge inputsijt 0.602  *** 0.619 *** -0.0305 ***

(-6.51)   (-6.51)   (5.00)   (7.96)   (8.17)  (-2.88)   

Firm size it 0.223  *** 0.225   *** 1.087   ** Firm size it -0.223  -0.207  0.112  **

(4.70)  (4.73)   (2.57)   (-0.64)  (-0.59)  (2.19)  

Cashit 0.729  0.638   -0.811   Cashit 2.207 4.168 3.084  **

(0.50)  (0.43)   (-0.072)  (0.20)  (0.38)  (2.03)   

Profitsit -4.484  ** -4.422  ** 58.33    *** Profitsit 73.31   *** 70.25   *** -3.018  

(-2.14)  (-2.11)   (3.56)   (4.73)  (4.53)  (-1.38)   

Year dummies included included included Year dummies included included included

Constant 0.857  *** 0.856   *** 6.54    *** Constant 2.587  *** 2.785  *** 0.994   ***

(58.6)    (58.5)     (8.43)   (19.5)    (19.0)    (30.9)     

Observations 10863 10863 7576 Observations 10863 10863 7576

t statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1

ScopeInventor specialization

First stage

Effect of inventor specialization on scope of technologies (H1) Effect of scope of technologies on inventor specialization (H2)

First stage Second stage

Scope

 
Table 3: 2SLS regressions for the interrelationship between inventor specialization and scope of technologies 
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(1) (2) (3) (4) (i) (ii) (iii) (iv) (v)

Scope (i) 1.00

Number of technology classes (ii) 0.042 *** 0.04 1.00

(3.55)

Number of citations made (iii) 0.00825 *** 0.10 0.03 1.00

(7.64)

Number of citations received (iv) 0.00682 *** 0.06 0.06 0.02 1.00

(6.27)

Generality (v) 0.0861 ** 0.02 0.25 0.00 0.34 1.00

(1.98)  

Number of claims 0.11  *** 0.11  *** 0.108 *** 0.109  ***

(123) (123) (102) (103)

Year dummies included included included included

Constant 2.171 *** 1.445 *** 1.622 *** 1.614  ***

(8.03) (22.8)  (22.3)  (22.2)    

Observations 37258 36937 25954 25954

t statistics in parentheses. *** p<0.01, ** p<0.05

Pairwise correlationsOLS regressions, dependent variable: Scope ijt

 

Table 4: Analyses of scope measure 

 

Figure 1: Effect of policy change on specialization 

 
 

Figure 2: Effect of policy change on scope 

 


